CARTAN SUBALGEBRAS OF SIMPLE LIE ALGEBRAS(1)

BY

ROBERT LEE WILSON

ABSTRACT. Let L be a finite-dimensional simple Lie algebra over an algebraically closed field of characteristic p > 7. Let H be a Cartan subalgebra of L, let $L = H + \sum_{\gamma \in \Gamma} L_{\gamma}$ be the Cartan decomposition of L with respect to H, and let \overline{H} be the restricted subalgebra of Der L generated by ad H. Let T denote the maximal torus of \overline{H} and I denote the nil radical of \overline{H} . Then $\overline{H} = T + I$. Consequently, each $\gamma \in \Gamma$ is a linear function on H.

Let L be a finite-dimensional simple Lie algebra over an algebraically closed field F. Let H be a Cartan subalgebra of L and let $L = H + \sum_{\gamma \in \Gamma} L_{\gamma}$ be the Cartan decomposition of L with respect to H. The main results on the structure of H, that H is abelian and that ad h is semisimple for each $h \in H$, which hold when F is of characteristic zero are known [3, Satz 12] to fail when F is of prime characteristic. The resulting lack of information about the structure of H has been a severe handicap in the development of structure and classification theory for finite-dimensional simple Lie algebras of prime characteristic.

In this paper we assume that F is of characteristic p > 7 and investigate the structure of \overline{H} , the restricted subalgebra of Der L generated by ad H. Our main result (Theorem 2.1) is that $\overline{H} = T + I$ where T is the maximal torus of \overline{H} and I is the nil radical of \overline{H} . (See §1 for definitions.) An immediate consequence (Corollary 2.2) is that each $\gamma \in \Gamma$ is a linear function on H. (Although in characteristic zero this is a trivial consequence of Lie's Theorem, the result is new in prime characteristic.)

This type of result was first proved by Schue [1] under the additional hypotheses that dim T=1 and that every proper subalgebra of L is solvable.

Our proof begins with Schue's observation that if $\overline{H} \neq T + I$ then there exists $b \in \overline{H}$, $b \notin T + I$ such that $b^p \in I$ and $[b, \overline{H}] \subseteq T + I$. We then let

$$S = \{(\gamma, \delta) \in \Gamma \times \Gamma | \gamma (\lceil b[L_{\delta}, L_{-\delta}] \rceil) \neq (0) \}.$$

Using Schue's techniques we show (§3) that there exist α , $\beta \in \Gamma$ with $(\alpha, \beta) \in S$ and $(\beta, \alpha) \in S$. The argument then divides into two cases depending on

Received by the editors March 4, 1976.

AMS (MOS) subject classifications (1970). Primary17B20.

¹This research was partially supported by National Science Foundation Grant number MPS72-04547A03.

whether or not there exists $\gamma \in \Gamma$ with $(\gamma, \gamma) \in S$. We consider these two cases separately (§§4 and 5), showing that either one leads to a contradiction. These results have been announced in [4].

1. Preliminaries.

(1.1) If $K \supseteq L$ are Lie algebras let $N_K(L)$ denote the normalizer of L in K and let C(K) denote the center of K.

Let R be a restricted Lie algebra over a field F of characteristic p > 0. If X is a subset of R let $\langle X \rangle$ denote the restricted subalgebra of R generated by X. If X is a subalgebra then $\langle X \rangle$ is clearly the F-span of $\{x^{p'}|x \in X, i > 0\}$.

(1.2) Following [2, Chapter V.7] or [1, §1] we say that $x \in R$ is semisimple if $x \in \langle x^p \rangle$ and that $x \in R$ is nilpotent if $x^{p^n} = 0$ for some n. See also [5].

An ideal $J \subseteq R$ is said to be *nil* if every $x \in J$ is nilpotent. It is easily seen that a finite-dimensional restricted Lie algebra R contains a nil ideal I which contains every nil ideal. We call I the *nil radical* of R. An abelian subalgebra $T \subseteq R$ is called a *torus* if every element of T is semisimple.

- (1.3) PROPOSITION. Let R be a finite-dimensional restricted Lie algebra over a perfect field F. Then:
- (i) If $x, y \in R$ are nilpotent (respectively, semisimple) and [x, y] = 0 then every element of $\langle \{x, y\} \rangle$ is nilpotent (respectively, semisimple).
- (ii) If $x \in R$ then there exist x_s , $x_n \in \langle x \rangle$ such that x_s is semisimple, x_n is nilpotent, and $x = x_s + x_n$.
- (iii) If $x, y, z \in R$, y semisimple, z nilpotent, [y, z] = 0, and x = y + z, then $y = x_s$ and $z = x_n$.
 - (iv) If R is nilpotent and $x \in R$ is semisimple then $x \in C(R)$.
 - (v) If R is nilpotent $\{x_s|x\in R\}$ is the unique maximal torus of R.

PROOF. Parts (i)—(iii) are proved in Chapter V.7 of [2]. If x is semisimple then $x \in \langle x^{p^n} \rangle$ for any n > 1. Since R is nilpotent, $\operatorname{ad}(x^{p^n}) = (\operatorname{ad} x)^{p^n} = 0$ for sufficiently large n. Hence ad x = 0, proving part (iv). Since $\{x_s | x \in R\}$ contains every semisimple element it must contain every torus of R. By (i) and (iv) $\{x_s | x \in R\}$ is a torus, proving part (v).

(1.4) Assume that F is algebraically closed, that L is a finite-dimensional simple Lie algebra over F, that H is a Cartan subalgebra of L, and that $L = H + \sum_{\gamma \in \Gamma} L_{\gamma}$ is the corresponding Cartan decomposition.

Identify L with the isomorphic subalgebra ad L of the restricted Lie algebra Der L. Let $\overline{H} = \langle H \rangle \subseteq \text{Der } L$. (Thus \overline{H} is the F-span of $\{h^{p^n}|h \in H, n > 0\}$, where we write h^{p^n} for $(\text{ad } h)^{p^n}$.) Let $\overline{L} = \overline{H} + L$.

LEMMA. (i) \overline{H} is a Cartan subalgebra of \overline{L} .

(ii) If $\overline{L} = \overline{H} + \sum_{\overline{\gamma} \in \overline{\Gamma}} \overline{L_{\overline{\gamma}}}$ is the Cartan decomposition of \overline{L} with respect to \overline{H} then the map $\overline{\gamma} \mapsto \overline{\gamma}|_H$ is a bijection of $\overline{\Gamma}$ onto Γ and $\overline{L_{\overline{\gamma}}} = L_{\overline{\gamma}|_H}$ for all $\overline{\gamma} \in \overline{\Gamma}$.

PROOF. Since $[x, y^p] = x(\operatorname{ad} y)^p$ and since \overline{H} is the F-span of $\{h^{p^n} | h \in H, n > 0\}$, we see by induction on i that $\overline{H}^i = H^i$ for all i > 2. Hence \overline{H} is nilpotent. If $x \in L \cap N_{\overline{L}}(\overline{H})$ then $[x, H] \subseteq \overline{H} \cap L = H$. Thus $x \in N_L(H) = H$. Hence $\overline{H} = N_{\overline{L}}(\overline{H})$, proving (i).

The map $\bar{\gamma} \mapsto \bar{\gamma}|_H$ is clearly surjective, since for each $\gamma \in \Gamma$, \bar{H} acts on L_{γ} and hence $L_{\gamma} \subseteq \sum_{\bar{\gamma} \in \bar{\Gamma}, \bar{\gamma}|_H = \gamma} \bar{L}_{\bar{\gamma}}$.

If $\bar{\gamma} \in \bar{\Gamma}$ then there exists $x \in \bar{H}$ such that $\bar{\gamma}(x) \neq 0$. Then ad $x \colon \bar{L}_{\bar{\gamma}} \to \bar{L}_{\bar{\gamma}}$ is surjective so $\bar{L}_{\bar{\gamma}} = [x, \bar{L}_{\bar{\gamma}}] \subseteq [\bar{L}, \bar{L}] \subseteq L$. Thus $\bar{L}_{\bar{\gamma}} \subseteq \bar{L}_{\bar{\gamma}|_{\bar{H}}}$.

Now suppose $\bar{\gamma}, \bar{\eta} \in \bar{\Gamma}$ and $\bar{\gamma}|_H = \bar{\eta}|_H \in \Gamma$. Then $\bar{L}_{\bar{\gamma}} \otimes (\bar{L}_{\bar{\eta}})^* \subseteq L_{\bar{\gamma}|_H} \otimes (L_{\bar{\eta}|_H})^*$ (where V^* denotes the contragredient module to V). Now H acts on $L_{\bar{\gamma}|_H} \otimes (L_{\bar{\eta}|_H})^*$. Moreover, the only weight is $\bar{\gamma}|_H - \bar{\eta}|_H = 0$. Hence H acts as a Lie algebra of nilpotent linear transformations on $L_{\bar{\gamma}|_H} \otimes (L_{\bar{\eta}|_H})^*$. By Engel's Theorem \bar{H} also acts as a Lie algebra of nilpotent linear transformations on $L_{\bar{\gamma}|_H} \otimes (L_{\bar{\eta}|_H})^*$. Thus the only weight of \bar{H} on $L_{\bar{\gamma}|_H} \otimes (L_{\bar{\eta}|_H})^*$ is 0. Since $\bar{\gamma} - \bar{\eta}$ is a weight of \bar{H} on $\bar{L}_{\bar{\gamma}} \otimes (\bar{L}_{\bar{\eta}})^*$ we have $\bar{\gamma} = \bar{\eta}$. Thus the map $\bar{\gamma} \mapsto \bar{\gamma}|_H$ is bijective and hence $\bar{L}_{\bar{\gamma}} = L_{\bar{\gamma}|_H}$.

(1.5) In view of Lemma 1.4(ii) we may identify $\overline{\Gamma}$ and Γ and write $\overline{L} = \overline{H} + \sum_{\gamma \in \Gamma} L_{\gamma}$. Let T denote the maximal torus of \overline{H} and I denote the nil radical of \overline{H} .

LEMMA. Each $\gamma \in \Gamma$ is linear on T + I.

PROOF. Since T is a torus each $t \in T$ acts diagonally on each L_{γ} and hence γ is linear on T.

If $h \in \overline{H}$ then by Lemma 1.3(ii) $h = h_s + h_n$. Then $h^{p'} = h_s^{p'} + h_n^{p'}$ for all i, hence $h^{p''} = h_s^{p''}$ for sufficiently large n. Now if $y \in L$, then

$$0 = y(\text{ad } h - \gamma(h))^{p^{n}} = y(\text{ad } h_{n} - \gamma(h))^{p^{n}}$$

for sufficiently large n. Hence $\gamma(h) = \gamma(h_s)$ for all $h \in H$. Now Lemma 1.3 shows that if $h \in T + I$ then $h_s \in T$, $h_n \in I$, and h_s is a linear function of h. Hence $\gamma(h) = \gamma(h_s)$ is a linear function of h.

(1.6) LEMMA. Let X be a subset of H and $E = \{ \gamma \in \Gamma | \gamma(X) \neq (0) \}$. If $E \neq \emptyset$ then $H = \sum_{\gamma \in E} [L_{\gamma}, L_{-\gamma}]$.

PROOF. This is a special case of (4.2) of [1]. (The hypothesis in (4.2) of [1] that L is semirestricted can be dropped here, since we assume $X \subseteq H$.)

2. Statement of results. Our main result is

(2.1) THEOREM. Let L be a finite-dimensional simple Lie algebra over an algebraically closed field F of characteristic p > 7. Let H be a Cartan subalgebra of L, \overline{H} be the restricted subalgebra of Det L generated by ad H, T be the maximal torus of \overline{H} , and I be the nil ideal of \overline{H} . Then $\overline{H} = T + I$.

(2.2) Let $L = H + \sum_{\gamma \in \Gamma} L_{\gamma}$ be the Cartan decomposition of L with respect to H. By Lemma 1.5 each $\gamma \in \Gamma$ is linear on T + I. By Theorem 2.1 $\overline{H} = T + I$. Hence we have

COROLLARY. Each $\gamma \in \Gamma$ is a linear function on H.

- 3. Action of \overline{H} on L.
- (3.1) Let F, L, and H be as in Theorem 2.1 and assume $\overline{H} \neq T + I$. We will eventually derive a contradiction, thus proving Theorem 2.1.

We begin with an analysis of the structure of \overline{H} modeled on §3.5 of [1].

LEMMA. If $\overline{H} \neq T + I$ then there exists $b \in \overline{H}$ such that

- (i) $b \notin T + I$,
- (ii) $[b, \overline{H}] \subseteq T + I$,
- (iii) $[b[\overline{H}, \overline{H}]] \subseteq I$,
- (iv) $[b, x^p] \in I$ for all $x \in \overline{H}$,
- (v) $b^p \in I$, and
- (vi) $[b, H] \not\subseteq I$.

PROOF. Since T is central and I is an ideal, T+I is a proper ideal of \overline{H} . Then $\overline{H}/(T+I)$ is a nonzero \overline{H} -module. As \overline{H} is nilpotent, there exists $b \in \overline{H}$, $b \notin T+I$, such that $[b,\overline{H}] \subseteq T+I$. Since $b=b_s+b_n$ and $b_s \in T$ we see that $b_n \in \overline{H}$, $b_n \notin T+I$. Thus we may assume that $b=b_n$ is nilpotent. Now

$$[b^p, \overline{H}] = [b, \overline{H}] (\operatorname{ad} b)^{p-1} \subseteq (T+I) (\operatorname{ad} b)^{p-1} \subseteq I$$

so $b^pF + I$ is a nil ideal containing I. Thus by the maximality of $I, b^p \in I$. Now,

$$\left\lceil b \left[\,\overline{H},\,\overline{H}\,\,\right] \,\right\rceil \subseteq \left[\,\left[\,b,\,\overline{H}\,\,\right]\overline{H}\,\,\right] \subseteq \left[\,T+I,\,\overline{H}\,\,\right] \subseteq I$$

and

$$[b, x^p] = [b, x](ad x)^{p-1} \in (T + I)(ad x)^{p-1} \subseteq I$$

for all $x \in \overline{H}$. If $[b, H] \subseteq I$ then $[b, \overline{H}] \subseteq I$, and so bF + I is a nil ideal containing I. This contradicts the maximality of I, so $[b, H] \subseteq I$.

(3.2) We continue to assume that L has Cartan decomposition $L = H + \sum_{y \in \Gamma} L_y$.

LEMMA. There exists $\gamma \in \Gamma$ such that $\gamma([b, H]) \neq (0)$.

PROOF. If $t \in T$ then $[y, t] = \gamma(t)y$ for all $y \in L_{\gamma}$. Hence $\gamma(t) = 0$ implies $[L_{\gamma}, t] = 0$ and $\gamma(t) = 0$ for all $\gamma \in \Gamma$ implies $t \in C(\overline{L}) = (0)$.

Now if $t \in T$, $n \in I$ then we have seen (in (1.5)) that $\gamma(t + n) = \gamma(t)$. Thus $\gamma(t + n) = 0$ for all $\gamma \in \Gamma$ implies $t + n \in I$. Since, by Lemma 3.1 (vi), $[b, H] \not\subseteq I$, we have $\gamma([b, H]) \neq (0)$ for some $\gamma \in \Gamma$.

(3.3) Let
$$S = \{(\gamma, \delta) \in \Gamma \times \Gamma | \gamma([b[L_{\delta}, L_{-\delta}]]) \neq (0) \}.$$

PROPOSITION. Either

$$(3.3.1) (\alpha, \alpha) \in S for some \alpha \in \Gamma,$$

or

(3.3.2) for all
$$\gamma \in \Gamma$$
, $(\gamma, \gamma) \notin S$ but there exist $\alpha, \beta \in \Gamma$ with $(\alpha, \beta) \in S$ and $(\beta, \alpha) \in S$.

PROOF. By Lemma 3.2 there exist $x \in H$ and $\gamma \in \Gamma$ such that $\gamma([b, x]) \neq 0$. Then by Lemma 1.6

$$H = \sum_{\gamma \in \Gamma, \, \gamma([b, \, x]) \neq 0} \left[L_{\gamma}, L_{-\gamma} \right].$$

Now by Lemma 3.1(vi) we have $[b, H] \subseteq I$. Thus there exists $\alpha \in \Gamma$ such that $\alpha([b, x]) \neq 0$ and $[b[L_{\alpha}, L_{-\alpha}]] \subseteq I$. Hence for some root δ , $\delta([b[L_{\alpha}, L_{-\alpha}]]) \neq 0$. Again by Lemma 1.6 we have

$$H = \sum_{\gamma \in \Gamma, \, \gamma(\left[b[L_{\alpha}, L_{-\alpha}]\right]) \neq (0)} \left[L_{\gamma}, L_{-\gamma}\right].$$

Since $x \in H$ and $\alpha([b, x]) \neq 0$ there exists $\beta \in \Gamma$ such that $\beta([b[L_{\alpha}, L_{-\alpha}]]) \neq (0)$ and $\alpha([b[L_{\beta}, L_{-\beta}]]) \neq (0)$. Thus either (3.3.1) or (3.3.2) holds.

(3.4) For $\gamma \in \Gamma$ define $\overline{H}_{\gamma} = \{x \in \overline{H} | \gamma([b, x]) = 0\}$. By Lemma 1.5 \overline{H}_{γ} is a subspace of \overline{H} . By (iii) and (iv) of Lemma 3.1, \overline{H}_{γ} is a restricted ideal of \overline{H} . If $\overline{H} \neq \overline{H}_{\gamma}$ fix an element $c_{\gamma} \in \overline{H}$ with $\gamma([b, c_{\gamma}]) = 1$.

Let V be a finite-dimensional irreducible restricted H-module. Then VI is a submodule and, since I is nil, $VI \neq V$. Thus VI = (0). Assume that $vt = \gamma(t)v$ for all $v \in V$, $t \in T$. Let $V_0 = \{v \in V | vb = 0\}$. Let $\{v_1, \ldots, v_n\}$ be a basis for V_0 . Let $C = C_{\gamma}$.

LEMMA. (i) For each k, $0 \le k \le p-1$, the F-span of $\{v_i c^j | 1 \le i \le n, 0 \le j \le k\}$ is an \overline{H}_{γ} -subspace of V.

(ii)
$$\{v_i c^j | 1 \le i \le n, 0 \le j \le p-1\}$$
 is a basis for V .

PROOF. Since $T \cap \ker \gamma$ is an ideal of \overline{H} of codimension 1 in T it is sufficient to prove the result under the assumption dim T = 1. This is done in §3.7 of [1].

(3.5) Fix $\alpha \in \Gamma$ as in Lemma 3.3. For $\gamma \in \Gamma$ define a bilinear form on $L_{\gamma} \times L_{-\gamma}$ by

$$(x,y) = \alpha(\lceil b\lceil x,y\rceil \rceil)$$
 for $x \in L_{\gamma}, y \in L_{-\gamma}$.

In view of Lemma 3.1(iii) and the Jacobi identity we have

$$(\lceil x, h \rceil, y) = (x, \lceil h, y \rceil)$$
 for all $x \in L_y, y \in L_{-y}, h \in \overline{H}$.

If X is an ad \overline{H} invariant subspace of L_{γ} then $X^{\perp} = \{ y \in L_{-\gamma} | (X, y) = (0) \}$ is an ad \overline{H} invariant subspace of $L_{-\gamma}$. Define $K_{-\gamma} = L_{\gamma}^{\perp}$ for all $\gamma \in \Gamma$ and define $n_{\gamma} = \dim L_{\gamma}/K_{\gamma}$.

Now if $(\alpha, \alpha) \in S$ and if for some i, 1 < i < p - 1, we have $n_{i\alpha} \neq 0$, then $(i\alpha, i\alpha) \in S$. Thus, replacing α by $i\alpha$ if necessary, we may assume that the root $\alpha \in \Gamma$ in (3.3.1) satisfies

$$(3.5.1) n_{\alpha} > n_{i\alpha} \text{for all } i, 1 \le i \le p-1.$$

Similarly, if (3.3.2) holds and if $n_{\beta+i\alpha} \neq 0$ for some $i, 0 \leq i \leq p-1$, then we have $(\alpha, \beta + i\alpha) \in S$ and $(\beta + i\alpha, \alpha) \in S$. Hence, replacing β by $\beta + i\alpha$ if necessary, we may assume that the pair (α, β) in (3.3.2) satisfies

(3.5.2)
$$n_{\beta} > n_{\beta+i\alpha}$$
 for all $i, 0 < i < p-1$.

(3.6) We will complete the proof of Theorem 2.1 in the next two sections by showing that either conclusion in Lemma 3.3 leads to a contradiction. In §4 we will show that if (3.3.1) holds then $n_{2\alpha} + n_{3\alpha} > 2n_{\alpha}$, contradicting (3.5.1), and in §5 we will show that if (3.3.2) holds then $n_{\beta+\alpha} + n_{\beta-\alpha} > 2n_{\beta}$, contradicting (3.5.2).

4. Dimension arguments. I.

- (4.1) We continue to let F, L, and H be as in Theorem 2.1 and to assume $\overline{H} \neq T + I$. In addition, we assume that (3.3.1) holds. Our object is to show that $n_{2\alpha} + n_{3\alpha} > 2n_{\alpha}$, thus contradicting (3.5.1).
- (4.2) Let $L_{\alpha} \supseteq N_{\alpha} \supseteq M_{\alpha} \supseteq K_{\alpha}$, where K_{α} is as in (3.5), N_{α} and M_{α} are ad \overline{H} invariant subspaces of L_{α} , and N_{α}/M_{α} is an irreducible \overline{H} -module (necessarily restricted).

For X = M or N and for i = 2, 3 define

$$X'_{i\alpha} = \left\{ x \in L_{i\alpha} | x (\text{ad } L_{-\alpha})^{i-1} \subseteq X_{\alpha} \right\}$$

and

$$X_{i\alpha} = X'_{i\alpha} + K_{i\alpha}.$$

Then $X_{i\alpha}$ is an ad \overline{H} submodule of $L_{i\alpha}$ and $L_{i\alpha} \supseteq N_{i\alpha} \supseteq M_{i\alpha} \supseteq K_{i\alpha}$ for i = 2, 3. By the Jacobi identity, $[X_{\alpha}, X_{\alpha}] \subseteq X_{2\alpha}$ and $[[X_{\alpha}, X_{\alpha}]X_{\alpha}] \subseteq X_{3\alpha}$.

LEMMA.
$$[X_{\alpha}^{\perp}, X_{\alpha}^{\perp}] \subseteq X_{2\alpha}^{\perp}$$
 and $[[X_{\alpha}^{\perp}, X_{\alpha}^{\perp}]X_{\alpha}^{\perp}] \subseteq X_{3\alpha}^{\perp}$.

Proof.

$$([X_{\alpha}^{\perp}, X_{\alpha}^{\perp}], X_{2\alpha}) \subseteq ([X_{\alpha}^{\perp}, X_{\alpha}^{\perp}], X'_{2\alpha}) + ([X_{\alpha}^{\perp}, X_{\alpha}^{\perp}], K_{2\alpha})$$

$$= ([X_{\alpha}^{\perp}, X_{\alpha}^{\perp}], X'_{2\alpha}) \subseteq (X_{\alpha}^{\perp}, [X_{\alpha}^{\perp}, X'_{2\alpha}])$$

$$\subseteq (X_{\alpha}^{\perp}, [L_{-\alpha}, X'_{2\alpha}]) \subseteq (X_{\alpha}^{\perp}, X_{\alpha}) = (0)$$

so $[X_{\alpha}^{\perp}, X_{\alpha}^{\perp}] \subseteq X_{2\alpha}^{\perp}$. The other result is similar.

(4.3) For $v \in L$ write vC for $[v, c_{\alpha}]$. Let $V_0 = \{v \in N_{\alpha} | [v, b] \in M_{\alpha}\}$. (Thus

 $V_0/M_\alpha=(N_\alpha/M_\alpha)_0$ in the notation of (3.4).) Choose $v_1,\ldots,v_n\in N_\alpha$ so that $\{v_1+M_\alpha,\ldots,v_n+M_\alpha\}$ is a basis for V_0/M_α . Define $V_{i+1}=V_i+V_iC$ for $0\le i\le p-2$. Then by Lemma 3.4 each V_i , $0\le i\le p-1$, is an ad \overline{H}_α subspace of L_α , $N_\alpha=V_{p-1}$, and N_α/M_α has basis $\{v_iC^j+M_\alpha|1\le i\le n, 0\le j\le p-1\}$.

Thus

$$(4.3.1) \qquad \left[V_j, \overline{H}_{\alpha} \right] \subseteq V_j \quad \text{for } 0 < j < p-1$$

and, since $\overline{H} = c_{\alpha}F + \overline{H}_{\alpha}$,

$$(4.3.2) \left[V_{j}, \overline{H}\right] \subseteq V_{j+1} \text{for } 0 \leqslant j \leqslant p-2.$$

Taking annihilators gives

(4.3.3)
$$L_{-\alpha} \supseteq M_{\alpha}^{\perp} \supseteq V_{0}^{\perp} \supseteq V_{1}^{\perp} \supseteq \cdots \supseteq V_{p-1}^{\perp} = N_{\alpha}^{\perp} \supseteq K_{-\alpha},$$

$$\left[V_{j}^{\perp}, \overline{H}_{\alpha}\right] \subseteq V_{j}^{\perp} \quad \text{for } 0 \leq j \leq p-1$$

and

$$(4.3.4) \left[V_j^{\perp}, \overline{H}\right] \subseteq V_{j-1}^{\perp} \text{ for } 1 \leq j \leq p-1.$$

(4.4) Since $\overline{H} = c_{\alpha}F + \overline{H}_{\alpha}$, if $x \in L_{\beta}$, $y \in L_{-\beta}$ we have $[x, y] = c_{\alpha}u + h$ for some $u \in F$, $h \in \overline{H}_{\alpha}$. Then $(x, y) = \alpha([b[x, y]]) = u$. Hence we have

$$(4.4.1) [x,y] \in c_{\alpha}(x,y) + \overline{H}_{\alpha} \text{for all } x \in L_{\beta}, y \in L_{-\beta}.$$

(4.5) Choose $d_{ij} \in M_{\alpha}^{\perp}$ for $1 \le i \le n$, $0 \le j \le p-1$, so that

$$(v_r C^s, d_{ii}) = \delta_{ir} \delta_{is}.$$

Then $V_j^{\perp}/N_{\alpha}^{\perp}$ has basis $\{d_{ik} + N_{\alpha}^{\perp} | 1 \le i \le n, j < k \le p-1\}$. Let W denote the linear span of $\{v_i C^j | 1 \le i \le n, 1 < j < p-1\}$. Define

$$\Phi: W \wedge W \rightarrow [W, W] \subseteq [N_{\alpha}, N_{\alpha}] \subseteq N_{2\alpha}$$

bу

$$(w_1 \wedge w_2)\Phi = [w_1, w_2].$$

Define

$$\Psi \colon W \wedge W \to [[W, W]N_{\alpha}] \subseteq [[N_{\alpha}, N_{\alpha}]N_{\alpha}] \subseteq N_{3\alpha}$$

by

$$(w_1 \wedge w_2)\Psi = [[w_1, w_2]v_1].$$

Let $\overline{\Phi}$: $W \wedge W \to N_{2\alpha}/M_{2\alpha}$ denote the composition of Φ with the canonical epimorphism and $\overline{\Psi}$: $W \wedge W \to N_{3\alpha}/M_{3\alpha}$ denote the composition of Ψ with the canonical epimorphism.

(4.6) Let $w \in W \land W$ and $e_1, e_2 \in V_1^{\perp}$. Then by the Jacobi identity

$$(w\Psi, [[e_1, d_{11}], e_2]) = ([w\Phi, v_1], [[e_1, d_{11}], e_2]) = A + B + D + E$$

where

$$A = (w\Phi, [v_1, [[e_1, d_{11}], e_2]]), B = ([[w\Phi, [e_1, d_{11}]], e_2], v_1),$$

$$D = ([e_1, [d_{11}, [w\Phi, e_2]]], v_1), E = ([[e_1, [w\Phi, e_2]], d_{11}], v_1).$$

Now

$$\begin{bmatrix} v_1, \left[\left[e_1, d_{11} \right], e_2 \right] \right] \in \begin{bmatrix} L_{\alpha} \left[\left[M_{\alpha}^{\perp}, M_{\alpha}^{\perp} \right] M_{\alpha}^{\perp} \right] \right] \subseteq \begin{bmatrix} M_{\alpha}^{\perp}, M_{\alpha}^{\perp} \end{bmatrix} \subseteq M_{2\alpha}^{\perp}$$
 by Lemma 4.2. Thus $A \in \underline{(w\Phi, M_{2\alpha}^{\perp})}$.

Since $[w\Phi, [e_1, d_{11}]] \in \overline{H}$ we have

$$B \in ([\overline{H}, V_1^{\perp}], V_0) \subseteq (V_0^{\perp}, V_0) = (0)$$
 by (4.3.4).

Similarly $[d_{11}, [w\Phi, e_2]] \in \overline{H}$ so D = 0.

Finally, since (by (4.4.1))

$$[e_1, [w\Phi, e_2]] \in (e_1, [w\Phi, e_2])c_\alpha + \overline{H}_\alpha,$$

and since

$$\left(\left[\overline{H}_{\alpha},d_{11}\right],v_{1}\right)\subseteq\left(\left[\overline{H}_{\alpha},V_{0}^{\perp}\right],V_{0}\right)\subseteq\left(V_{0}^{\perp},V_{0}\right)=\left(0\right)$$

(by (4.3.3)), while

$$([c_{\alpha}, d_{11}], v_1) = -(d_{11}, [c_{\alpha}, v_1]) = -(v_1C, d_{11}) = -1,$$

we have $E = ([w\Phi, e_2], e_1)$.

Let $J = \{(s, j, r, i) \in \mathbb{Z}^4 | 1 < r \le s < p - 1, 1 \le i, j \le n, \text{ and } i < j \text{ if } r = s\}$. Then $W \wedge W$ has basis $\{v_i C^r \wedge v_j C^s | (s, j, r, i) \in J\}$. Order J lexicographically. Then we have

(4.7) LEMMA. Let

$$G = \left(\left[\left(v_{i'} C^{r'} \wedge v_{j'} C^{s'} \right) \Phi, d_{ir} \right], d_{j,s+1} \right)$$

where (s, j, r, i) and $(s', j', r', i') \in J$. Then G = -1 if (s, j, r, i) = (s', j', r', i') and G = 0 if (s, j, r, i) > (s', j', r', i').

PROOF. By the Jacobi identity

$$G = \left(\left[\left[v_{i'}C^{r'}, v_{j'}C^{s'} \right], d_{ir} \right], d_{j,s+1} \right)$$

$$= \left(\left[\left[v_{i'}C^{r'}, d_{ir} \right], v_{j'}C^{s'} \right], d_{j,s+1} \right) + \left(\left[v_{i'}C^{r'}, \left[v_{j'}C^{s'}, d_{ir} \right] \right], d_{j,s+1} \right).$$

Assume $(s, j, r, i) \ge (s', j', r', i')$. Since (by (4.3.1)) $[\overline{H}_{\alpha}, v_j C^{s'}] \subseteq V_{s'}$ and $[v_i C^r, \overline{H}_{\alpha}] \subseteq V_r \subseteq V_{s'}$, while $d_{j,s+1} \in V_s^{\perp} \subseteq V_{s'}$, we see from (4.4.1) that

$$G = -(v_i C^{r'}, d_{ir})(v_i C^{s'+1}, d_{j,s+1}) + (v_i C^{s'}, d_{ir})(v_i C^{r'+1}, d_{j,s+1}).$$

The first summand is -1 if (s, j, r, i) = (s', j', r', i') and is zero otherwise. If the second summand is nonzero then $s + 1 = r' + 1 \le s' + 1 = r + 1$ so r = s = r' = s'. But then j = i' < j' = i < j, a contradiction. Thus the second summand is zero, proving the lemma.

(4.8) Lemma. ker
$$\overline{\Phi} \cap \ker \overline{\Psi} = (0)$$
.

PROOF. Suppose $w \in \ker \overline{\Psi} \cap \ker \overline{\Psi}$. Since $w\overline{\Psi} = 0$ we have $w\Psi \in M_{3\alpha}$, so by Lemma 4.2, if $e_1, e_2 \in V_1^{\perp}$, we have

$$(w\Psi, [[e_1, d_{11}], e_2]) \in (M_{3\alpha}, M_{3\alpha}^{\perp}) = (0).$$

Also, since $w\overline{\Phi} = 0$ we have $w\Phi \in M_{2\alpha}$. Thus in (4.6) $A \in (M_{2\alpha}, M_{2\alpha}^{\perp}) = (0)$. Thus

$$0 = (w\Psi, \lceil [e_1, d_{11}], e_2]) = (\lceil w\Phi, e_2], e_1).$$

If $w \neq 0$ then

$$w = u(v_i C^r \wedge v_j C^s) + \sum_{l \in J, l < (s,j,r,i)} w_l,$$

where $0 \neq u \in F$ and where w_l is a scalar multiple of the basis element corresponding to $l \in J$. But then Lemma 4.7 shows that $0 = [[w\Phi, d_{ir}], d_{j,s+1}] = -u$. This contradiction shows w = 0.

(4.9) COROLLARY. dim
$$N_{2\alpha}/M_{2\alpha}$$
 + dim $N_{3\alpha}/M_{3\alpha}$ > 2(dim N_{α}/M_{α}).

PROOF. Since, by Lemma 4.8, $\overline{\Phi} \oplus \overline{\Psi}$ injects $W \wedge W$ into $N_{2\alpha}/M_{2\alpha} \oplus N_{3\alpha}/M_{3\alpha}$, it is sufficient to show that dim $W \wedge W > 2(\dim N_{\alpha}/M_{\alpha})$. Now we have dim $N_{\alpha}/M_{\alpha} = np$ (by (4.3)) and dim W = n(p-3). Hence the corollary holds if n(p-3)(n(p-3)-1)/2 > 2np or, equivalently, if $n(p-3)^2 > 5p-3$. Since p > 7 this is valid for all $n \ge 1$.

(4.10) COROLLARY.
$$n_{2\alpha} + n_{3\alpha} > 2n_{\alpha}$$
.

PROOF. Apply Corollary 4.9 to each quotient in a composition series from K_{α} to L_{α} .

5. Dimension arguments. II.

(5.1) We continue to let F, L, and H be as in Theorem 2.1 and to assume $\overline{H} \neq T + I$. In addition, we assume that (3.3.2) holds. Our object is to show that $n_{\beta+\alpha} + n_{\beta-\alpha} > 2n_{\beta}$, contradicting (3.5.2).

(5.2) If
$$v \in L_{\beta}$$
 write $vC = [v, c_{\beta}]$. Let

$$L_{\beta} = W_{\iota} \supseteq W_{\iota-1} \supseteq \cdots \supseteq W_{1} \supseteq W_{0} = K_{\beta},$$

where each W_i is a \overline{H} -submodule of L_{β} and each W_{i+1}/W_i is an irreducible \overline{H} -module. Let $W_{i,0} = \{w \in W_i | [b, w] \in W_{i-1}\}$ for $1 \le i \le t$ and $W_{i,j+1} = W_{i,j} + W_{i,j}C$ for $0 \le j \le p-2$. Then by Lemma 3.4 we have a chain of

ad \overline{H}_{B} invariant subspaces:

$$W_i = W_{i,n-1} \supseteq W_{i,n-2} \supseteq \cdots \supseteq W_{i,1} \supseteq W_{i,0} \supseteq W_{i-1}$$

Furthermore, if $\{v_{i,j} + W_{i-1} | 1 \le j \le n_i\}$ is a basis for $W_{i,0}/W_{i-1}$, then

$$\{v_{i,j}C^k + W_{i-1}|1 \le j \le n_i, 0 \le k \le p-1\}$$

is a basis for W_i/W_{i-1} , so that

$$\left\{v_{i,j}C^k + K_{\beta}|1 \le i \le t, 1 \le j \le n_i, 0 \le k \le p-1\right\}$$

is a basis for L_{β}/K_{β} . Thus, if $n = \sum_{i=1}^{t} n_i$, we have $n_{\beta} = pn$. Finally, again by Lemma 3.4, we have

$$\left[\ W_{i,j}, \, \overline{H}_{\beta} \, \right] \subseteq \, W_{i,j} \quad \text{for all } i,j.$$

For $1 \le i \le t$, $1 \le j \le n_i$, $0 \le k \le p-1$ choose $d_{i,j,k} \in L_{-\beta}$ so that

$$(v_{r,s}C^q,d_{i,i,k})=\delta_{ir}\delta_{is}\delta_{kq}.$$

(5.3) LEMMA. There exist elements $w_1, \ldots, w_p \in L_{\alpha}$ and $u_1, \ldots, u_p \in L_{-\alpha}$ such that

$$\beta(\lceil b[w_i, u_j] \rceil) = \delta_{ij}$$

and, hence,

$$[w_i, u_i] \in \delta_{ii}c_R + \overline{H}_B$$
.

PROOF. Let $Q_{\alpha} = \{x \in L_{\alpha} | \beta([b[x, L_{-\alpha}]]) = (0)\}$. Then Q_{α} is an \overline{H} -submodule of L_{α} . Applying Lemma 3.4 to an irreducible submodule of L_{α}/Q_{α} (which is nonzero since $(\beta, \alpha) \in S$) gives the result.

(5.4) Let J' denote $\{(r, i, j, k)|1 \le r \le p, 1 \le i \le t, 1 \le j \le n_i, 0 \le k \le p-1\}$ and $J = \{(r, i, j, k) \in J' | k \ne p-1\}$.

LEMMA. The np² by np² matrix

$$(([[w_r, u_{r'}]v_{ij}C^k], d_{i',j',k'}))_{(r,i,i,k),(r',i',i',k')\in I'}$$

has rank > n(p-1)p.

PROOF. It is sufficient to show that the rows corresponding to $(r, i, j, k) \in J$ are linearly independent. Thus assume that for each $(r, i, j, k) \in J$ we have $a_{r,i,i,k} \in F$ such that

$$0 = \sum_{i} a_{r,i,j,k} ([[w_r, u_{r'}] v_{i,j} C^k], d_{i',j',k'})$$

for all $(r', i', j', k') \in J'$. We must show that all $a_{r,i,j,k} = 0$.

Assume that $1 \le q \le t$ and $0 \le u \le p-2$ and that $a_{r,i,j,k} = 0$ for all $(r, i, j, k) \in J$ with i > q or i = q and k > u. (This condition is vacuous if q = t, u = p - 2.) We will show $a_{r,q,j,u} = 0$ for all r and j and, hence, by

induction that $a_{r,i,j,k} = 0$ for all $(r, i, j, k) \in J$. We have, for all r', $1 \le r' \le p$, and all j', $1 \le j' \le n_q$,

$$0 = \sum_{I} a_{r,i,j,k} \left(\left[\left[w_r, u_{r'} \right] v_{i,j} C^k \right], d_{q,j',u+1} \right).$$

Since $a_{r,i,j,k} = 0$ if i > q and

$$([[w_r, u_r]v_{i,j}C^k], d_{q,j',u+1}) \in (W_i, d_{q,j',u+1}) = (0)$$

if i < q, we have

$$0 = \sum_{r,i,k} a_{r,q,j,k} ([[w_r, u_{r'}]v_{q,j}C^k], d_{q,j',u+1}).$$

Since, by (5.2) and (5.3),

$$\left[\left[w_{r}, u_{r}\right] v_{q,j} C^{k}\right] \in \left[\delta_{r,r} c_{\beta}, v_{q,j} C^{k}\right] + \left[\overline{H}_{\beta}, W_{q,k}\right] \subseteq -\delta_{r,r} v_{q,j} C^{k+1} + W_{q,k}$$

and since, by the induction assumption, $a_{r,q,j,k} = 0$ if k > u, we have

$$0 = -\sum_{j} a_{r',q,j,u} (v_{q,j} C^{u+1}, d_{q,j',u+1}) = -a_{r',q,j',u},$$

as required.

(5.5) Let
$$x_{\alpha} \in L_{\alpha}$$
, $x_{\beta} \in L_{\beta}$, $y_{\alpha} \in L_{-\alpha}$, and $y_{\beta} \in L_{-\beta}$. Then
$$([x_{\alpha}, x_{\beta}], [y_{\alpha}, y_{\beta}]) + ([x_{\beta}, y_{\alpha}], [x_{\alpha}, y_{\beta}])$$

$$= ([[x_{\alpha}, x_{\beta}]y_{\alpha}], y_{\beta}) + (y_{\alpha}, [[x_{\alpha}, x_{\beta}]y_{\beta}])$$

$$+ ([[x_{\beta}, y_{\alpha}]x_{\alpha}], y_{\beta}) + (x_{\alpha}, [[x_{\beta}, y_{\alpha}]y_{\beta}])$$

$$= ([[x_{\alpha}, x_{\beta}]y_{\alpha}], y_{\beta}) + ([[x_{\beta}, y_{\alpha}]x_{\alpha}], y_{\beta}) \quad (\text{since } (\alpha, \alpha) \notin S)$$

$$= ([[x_{\alpha}, y_{\alpha}]x_{\beta}], y_{\beta}).$$

Now

$$n_{\beta+\alpha} = \dim(L_{\beta+\alpha}/K_{\beta+\alpha}) \geqslant \operatorname{rank}([x_{\alpha}, x_{\beta}], [y_{\alpha}, y_{\beta}])$$

where x_{α} , x_{β} , y_{α} , y_{β} run over subsets of the appropriate L's. A similar remark holds for $n_{B-\alpha}$. Also, if A and B are matrices then

$$rank A + rank B > rank(A + B)$$
.

Then setting $x_{\alpha} = w_r$, $y_{\alpha} = u_{r'}$, $x_{\beta} = v_{i,j}C^k$, and $y_{\beta} = d_{i',j',k'}$, where (r, i, j, k)and $(r', i', j', k') \in J'$, we see from Lemma 5.4 that $n_{\beta+\alpha} + n_{\beta-\alpha} > n(p - 1)$ 1) p. Since p-1>2 we have $n_{\beta+\alpha}+n_{\beta-\alpha}>2np=2n_{\beta}$, as required.

REFERENCES

1. J. R. Schue, Cartan decompositions for Lie algebras of prime characteristic, J. Algebra 11 (1969), 25-52; erratum, ibid. 13 (1969), 588. MR 38 #201, p. 1378; 40 #197.

- 2. G. B. Seligman, *Modular Lie algebras*, Ergebnisse Math. Grenzgebiete, Band 40, Springer-Verlag, Berlin and New York, 1967. MR 39 #6933.
- 3. H. Strade, Nodale nichtkommutative Jordanalgebren und Lie-Algebren bei Charakteristik p > 2, J. Algebra 21 (1972), 353-377. MR 48 #8584.
- 4. R. L. Wilson, The roots of a simple Lie algebra are linear, Bull. Amer. Math. Soc. 82 (1976), 607-608. MR 53 #13331.
- 5. D. J. Winter, On the toral structure of Lie p-algebras, Acta Math. 123 (1969), 69-81. MR 40 #4326.

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903